Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 9(12)2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276582

RESUMO

A tiller number is the key determinant of rice plant architecture and panicle number and consequently controls grain yield. Thus, it is necessary to optimize the tiller number to achieve the maximum yield in rice. However, comprehensive analyses of the genetic basis of the tiller number, considering the development stage, tiller type, and related traits, are lacking. In this study, we sequence 219 Korean rice accessions and construct a high-quality single nucleotide polymorphism (SNP) dataset. We also evaluate the tiller number at different development stages and heading traits involved in phase transitions. By genome-wide association studies (GWASs), we detected 20 significant association signals for all traits. Five signals were detected in genomic regions near known candidate genes. Most of the candidate genes were involved in the phase transition from vegetative to reproductive growth. In particular, HD1 was simultaneously associated with the productive tiller ratio and heading date, indicating that the photoperiodic heading gene directly controls the productive tiller ratio. Multiple linear regression models of lead SNPs showed coefficients of determination (R2) of 0.49, 0.22, and 0.41 for the tiller number at the maximum tillering stage, productive tiller number, and productive tiller ratio, respectively. Furthermore, the model was validated using independent japonica rice collections, implying that the lead SNPs included in the linear regression model were generally applicable to the tiller number prediction. We revealed the genetic basis of the tiller number in rice plants during growth, By GWASs, and formulated a prediction model by linear regression. Our results improve our understanding of tillering in rice plants and provide a basis for breeding high-yield rice varieties with the optimum the tiller number.

2.
Theor Appl Genet ; 119(8): 1497-506, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19756471

RESUMO

Panicle architecture in rice can have a strong influence on yield. Using N-methyl-N-nitrosourea mutagenesis, we isolated an erect panicle mutant, Hep, from Hwasunchalbyeo, a glutinous japonica rice cultivar. Genetic analysis revealed that the erect panicle phenotype was controlled by a single recessive mutation designated erect panicle 3 (ep3). Genetic mapping revealed that the ep3 mutation was located on the short arm of chromosome 2 in a 0.1 cM region delimited by the STS markers STS5803-5 and STS5803-7. The ep3 locus corresponded to 46.8 kb region and contained six candidate genes. Comparison of the DNA sequences of the candidate genes from wild-type and erect panicle plants revealed a single base-pair change in the second exon of LOC_Os02g15950, which is predicted to result in a nonsense mutation. LOC_Os02g15950 encodes a putative F-box protein containing 515 amino acids and is expressed throughout the plant during all growth stages. A line carrying a T-DNA insertion in LOC_ Os02g15950 was obtained and shown to have the same phenotype as the ep3 mutant, thus confirming the identification of LOC_Os02g15950 as the ERECT PANICLE 3 (EP3) gene. The ep3 mutation causes a significant increase in the number of small vascular bundles as well as the thickness of parenchyma in the peduncle, which results in the erect panicle phenotype.


Assuntos
Proteínas F-Box/genética , Genes de Plantas , Oryza/genética , Proteínas de Plantas/genética , Mapeamento Cromossômico , Clonagem Molecular , Mutação , Oryza/anatomia & histologia , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...